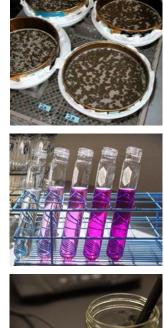
New York Soil Health 2022:

What have we learned and done?

Joseph Amsili Debbie Aller Harold van Es

College of Agriculture and Life Sciences

Comprehensive Assessment of Soil Health


Soil health laboratory launched in 2006 CASH test captures all important soil processes (physical, biological, chemical)

Focus on

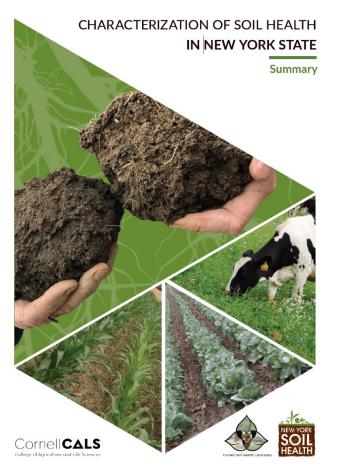
- Practical soil health testing services
- Interprets measured values
- Identifies soil constraints
- Guidance for management

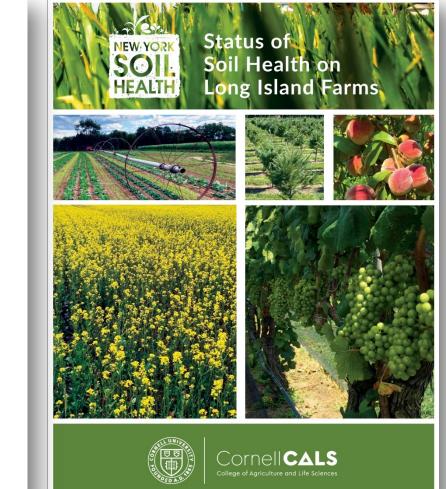
32,000+ samples processed, 20,000 in

past 5 yrs

Comprehensive Assessment of Soil Health From the Cornell Soil Health Laboratory, Department of Soil and Crop Sciences School of Integrative Plant Science, Cornell University, Ithaca, NY 14853

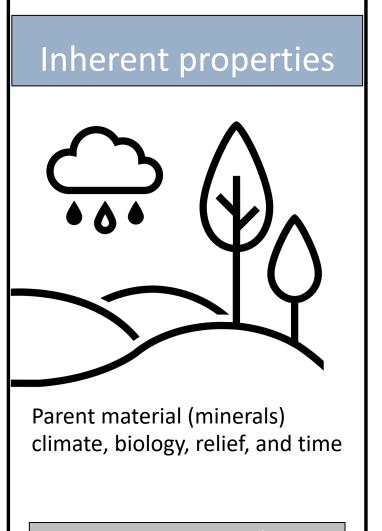
https://soilhealthlab.cals.cornell.edu




New York So jpa28@corn	ill Health / NYSH ell.edu			
Measured S	Soil Textural Class: Ioam			
Sand: 45%	- Silt: 37% - Clay: 17%			
Group	Indicator	Value	Rating	Constraints
physical	Predicted Available Water Capacity	0.21	78	
physical	Surface Hardness	131	64	
physical	Subsurface Hardness	346	33	
physical	Aggregate Stability	4.1	6	Aeration, Infiltration, Rooting, Crusting, Sealing, Erosion, Run
biological	Organic Matter Soil Organic Carbon: 1.84 / Total Carbon: 1.96 / Tota Nitrogen: 0.17	2.9	45	
biological	Predicted Soil Protein	5.30	36	
biological	Soil Respiration	0.5	33	
biological	Active Carbon	543	59	
chemical	Soil pH	8.0	21	
chemical	Extractable Phosphorus	1.6	47	
chemical	Extractable Potassium	30.2	39	
chemical	Additional Nutrients Ca: 1384.0 / Mg: 121.6 / S: 2.7 Ai: 2.1 / Cu: 0.10 / Fe: 0.4		88	

Status of Soil Health: New York State and Long Island

- First statewide and regional characterization reports
- Document current status of soil health on farmland statewide and in Suffolk County, Long Island
- Recognize distinct production environments

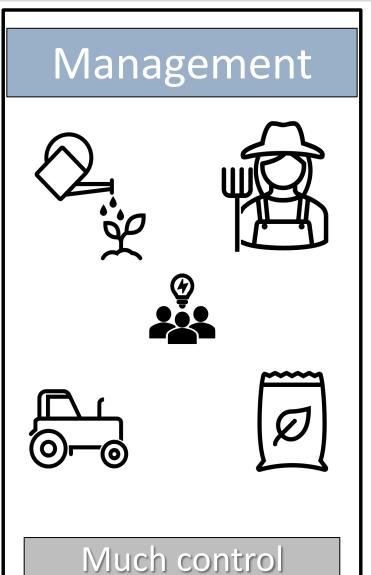

Amsili et al., 2020

Aller et al., 2022

Factors of Soil Health

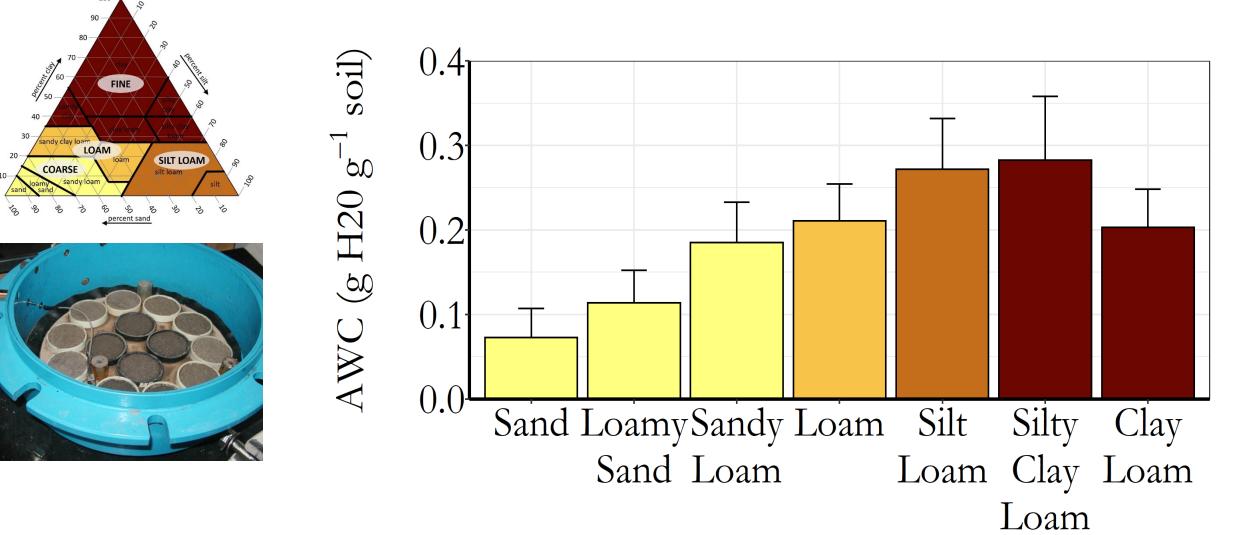
Graphics by V. Rubio

No control



Limited control

Factors of Soil Health


Inherent Properties - Soil Type

Credit: USDA-NRCS and Richard Stehouwer

Available water capacity by Soil Texture

Soil Biological Indicators by Soil Texture

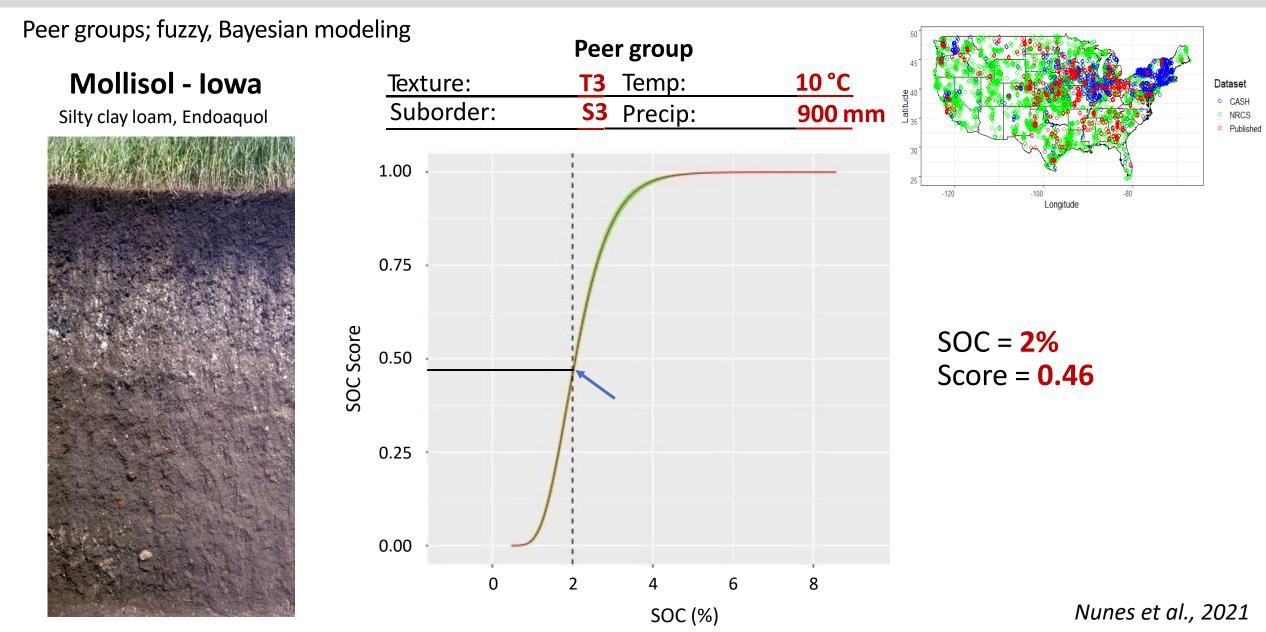
Finer textured soils store more organic matter, reactive organic carbon, and are more biologically active than coarse textured soils

Texture		Organic Matter	Active C	Protein	Respiration
Class	n	%	/POXC mg/kg	mg/g	mg CO ₂ /g
Coarse	407	2.5 c	498 d	7.2 a	0.48 c
Loam	714	3.0 b	548 c	6.5 b	0.59 b
Silt Loam	583	3.7 a	578 b	7.7 a	0.69 a
Fine	46	4.1 a	666 a	7.4 b	0.67 ab

Interpreting Soil Health Data

Comprehensive Assessment of Soil Health

From the Cornell Soil Health Laboratory, Department of Soil and Crop Sciences School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 https://soilhealthlab.cals.cornell.edu



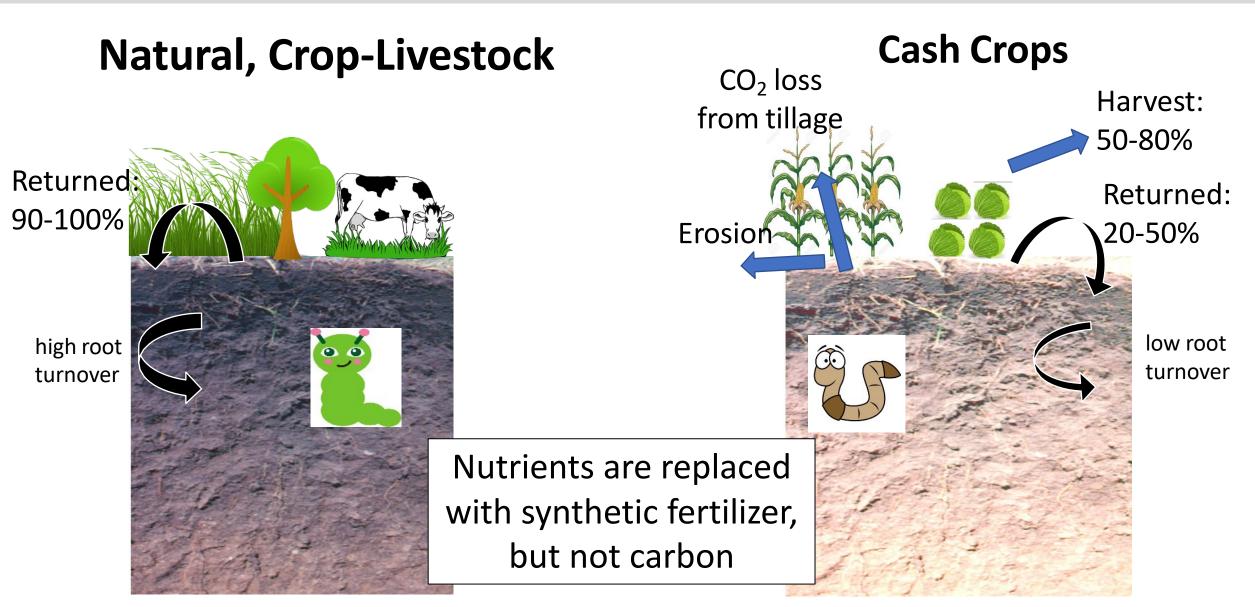
Rating	Constraints
78	
64	
33	
6	Aeration, Infiltration, Rooting, Crusting, Sealing, Erosion, Runoff
45	
36	
33	
59	
21	
47	
39	
88	

Data Interpretation: SHAPE (Soil Health Assessment Protocol for Evaluation)

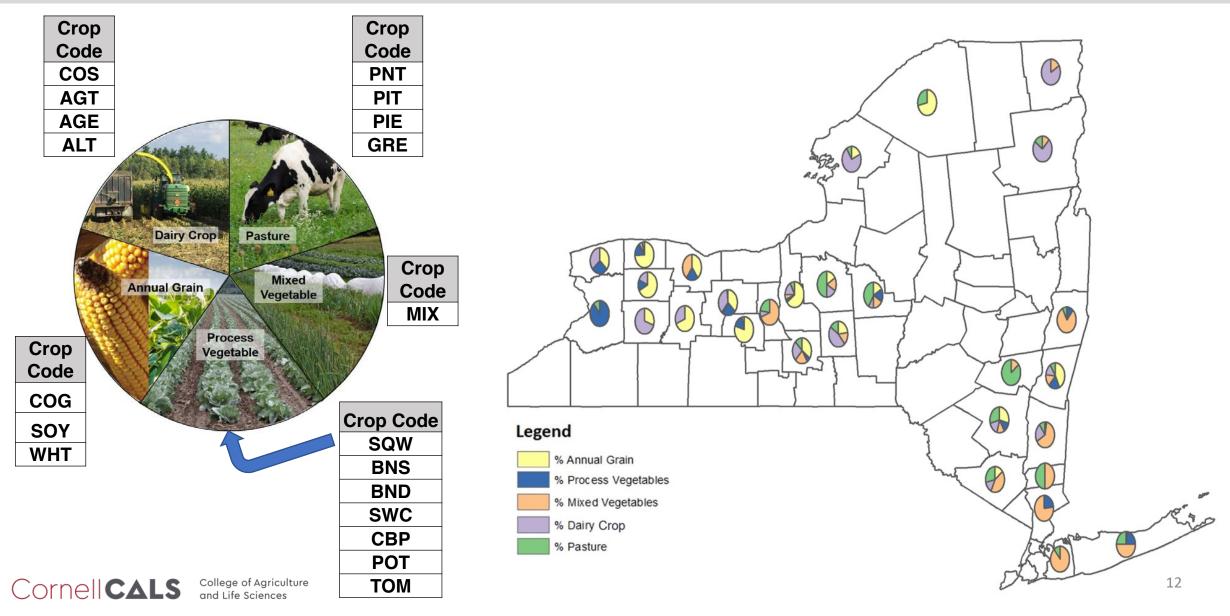


Factors of Soil Health

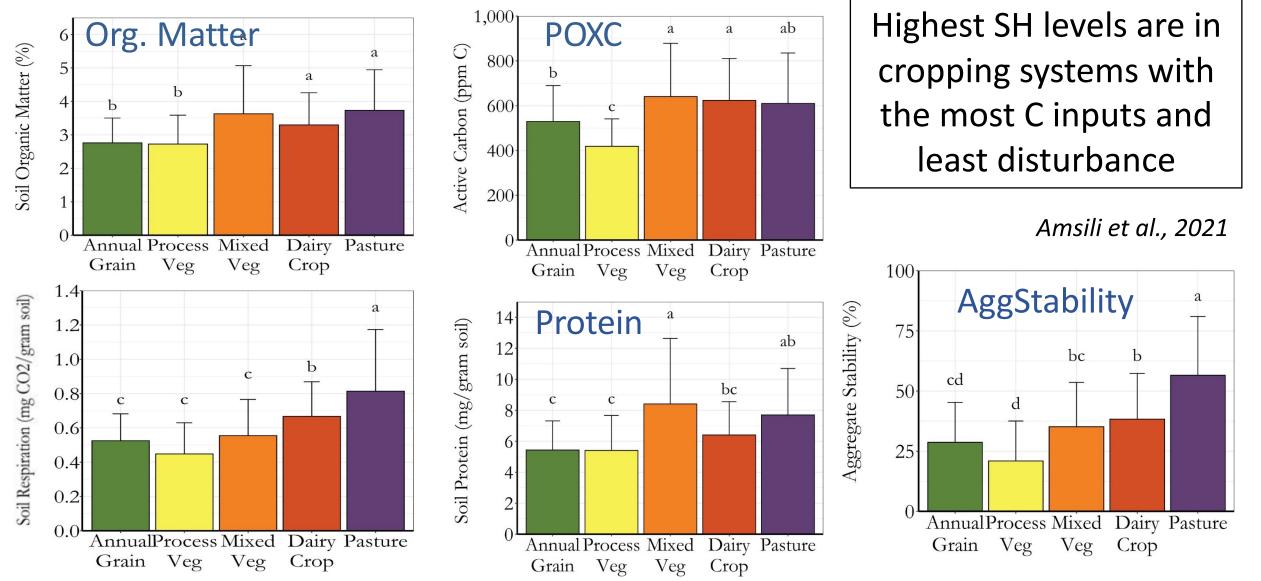
Human - Cropping Systems and Biomass Cycling



Cropping Systems, Carbon and Nutrient Flows vs.Cycles: Two Extremes Related to Agricultural Specialization



Characterization of Soil Health in New York State


NEW YORK SOIL HEALTH

How do Cropping Systems (management) impact soil health?

Selected Soil Health Indicators by Cropping System – NY

Loam Texture

NYS Soil Health and Climate Resiliency Act

establish appropriate voluntary standards and objectives for soil health

)) ••••

"

Production Environment Soil Health (PESH) Goals

Score

Development of soil health goals by soil type, cropping system, and region (production environment)

 → define goals as the 75th or 90th percentile (e.g. NY-Loam-Annual Grain)

Annual Grain Cropping System 1.000.75 0.50 0.25 0.00 3 3.2 3.7 4 5

New York Loam soils

Soil Organic Matter (%)

PESH Goals by Cropping System – New York

(Q75 Basis, Loam Texture)

Cropping		SOM	Predicted	POXC	Protein	Resp	WAS	AWC	PR15	PR45
System			SOC							
	n	%	%	mg/kg	mg/g	mg CO ₂ /g	%	g H ₂ 0/g	psi	psi
					Loam					
Annual Grain	209	3.2	2.0	651	5.9	0.61	34.5	0.22	100	230
Processing Veg	48	3.0	1.8	507	6.0	0.47	25.7	0.22	100	230
Dairy Crop	133	3.6	2.3	688	7.4	0.72	38.9	0.22	100	230
Mixed Veg	90	4.6	2.9	784	10.1	0.67	44.5	0.24	100	230
Orchard	67	3.2	2.1	601	7.4	0.58	41.9	0.22	100	230
Pasture	46	4.6	2.9	712	9.0	1.05	74.5	0.24	100	230
All	593	3.5	2.2	666	7.2	0.66	39.8	0.23	100	230

Regional PESH Goals by Cropping System in NY

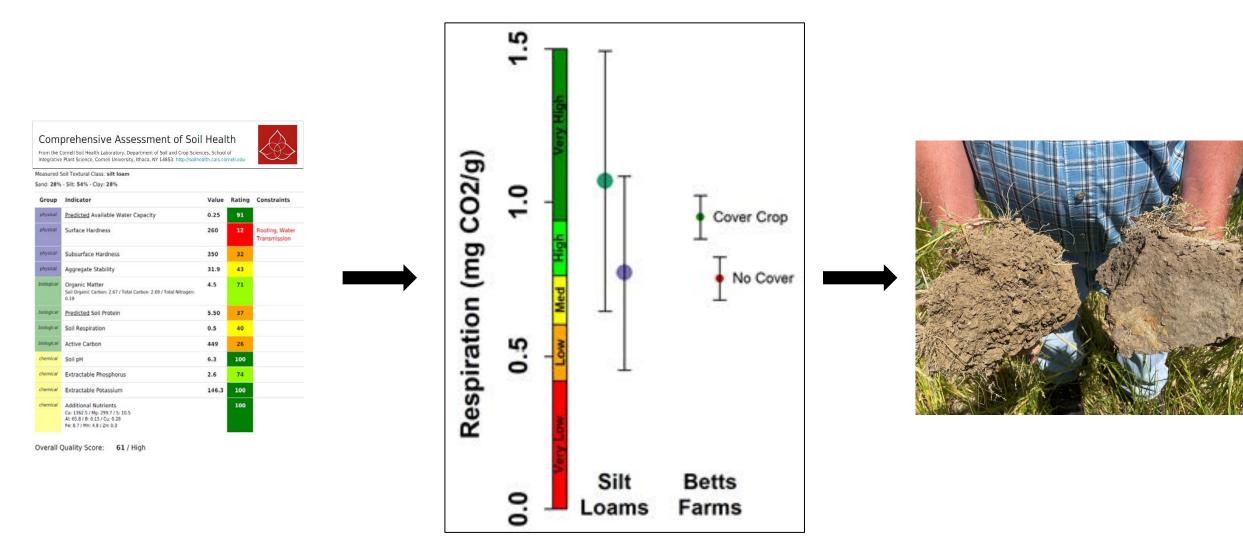
Silt Loam Texture

• Regionalization of PESH goals was necessary for: Long Island, NY vs. the Rest of NY

	NYS	5 w/o Long	s Island	Long Is	sland	
Cropping System	n	SOM	Q75 SOM	n	SOM	Q75 SOM
		%	%		%	%
Annual Grain	79	3.6	4.2	-	-	-
Processing Veg	21	3.5	4.2	13	2.9	3.5
Dairy Crop	52	3.9	4.4	-	-	-
Mixed Veg	58	4.3	5.0	38	2.6	3.0
Orchard	48	3.7	4.5	25	2.8	3.1
Pasture	62	5.2	5.9	20	3.2	3.6

Explanation: Coarser textured soils and 3.3 °C warmer climate than the rest of NYS are likely causes of these differences.

Amsili et al., 2022



Extension and Outreach

Applications of the CASH Test

Soil Health Benchmarking

Coordinate the New York Soil Health Alliance

- NYSH Working Group \rightarrow NYSH Alliance (2022)
- Individuals and organizations from across NYS interested and/or working on soil health
- Meet biannually in different locations across NYS to share updates, coordinate activities, and facilitate collaboration on projects and programs

Soil Health and Climate Resiliency Field Day Series 2022

NYSH mini-grants 2022

- First year offering mini-grants
 - Up to \$3,000 for projects
 - Up to \$500 for travel
- Project grants were to support research, extension, or outreach activities with a soil health component
- Travel grants for travel and attendance at a soil health related workshop, field day, event, etc., within NYS.
- Received over 60 applications
- Supported 11 organizations across 10 counties

```
    Cameron Community Ministries – 'From the Ground Up: Healthy Soil for Healthy Living,' Monroe – $2000
    CCE Vegetable Program – 'Cover Crops & Soil Health,' Erie – $500
    West Haven Farm – 'Juntos Aprendemos: Un Día de Campo en Español para la Comunidad Latina,' Tompkins – $2000
    CCE Capital Area Agriculture & Horticulture Program – 'Soil health field days for cut flower production,' Albany – $1500
    CCE Chautauqua – '4H Special Interest Programming,' Chautauqua – $1000
    Farm School NYC – 'Studying Safe Soils with FSNYC,' Kings (NYC) – $2250
    CCE Oneida – 'Urban Farm Learning Lab at Union Station: Exploring Soil Health in Urban Growing,' Oneida – $770
```

Awarded Project Grants (organization - project title, county, award amount)

1. Agricultural Stewardship Association, Inc. – 'Soil Health Workshop for Livestock and Crop Farmers,' Washington – \$500

Farm School NYC - 'Community Work & Learn day at Soul Fire Farm,' Kings (NYC) - \$500
 MaWu Lisa Temple - 'Healthy soils in Siuslaw Model Forest,' Ulster - \$500
 King of Glory Farms - 'Organic no-till workshop,' Sullivan - \$500

Advanced Trainings in SH & Sustainable Soil Management

Soil Health Certificate Course

Advanced

From a Global Perspective

DEC 5-14, 2021

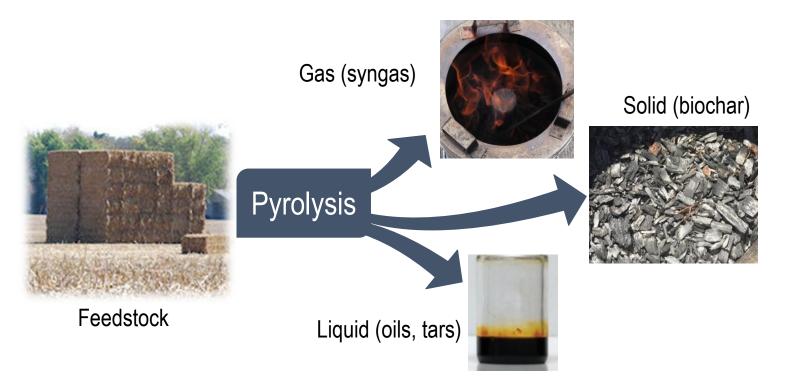
 VIRTUAL COURSE: GUIDED SELF-STUDY & LIVE ONLINE SESSIONS

\$100 (\$40 DEVELOPING COUNTRIES) SCHOLARSHIPS AVAILABLE

www.soilhealthtraining.org

- 220 participates \rightarrow Dec. 2021 Course
- Will be offered again February -March 2023. Registration coming soon!

- NYSH Specialist Trainings
 - 1st cohort (2018-2020)
 - 2nd cohort (2020-2021)
 - ~ 45 graduates
 - Future → urban or perennial fruit focused training

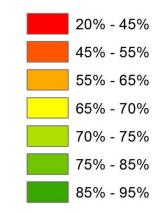

Collaborative research and extension initiatives

- On-farm research in orchards and vineyards
 - Vineyards both vinifera and concord (*Jennifer Russo, Alice Wise, Justine Vanden Heuvel)
 - Orchards more sampling needed, connecting management practices to SH indicators, evaluating if current indicators are all relevant for tree fruit (*Mike Basedow, Janet Van Zoeren, Mario Sazo, Greg Peck)
- Support urban soil health applied research/extension activities (*Jonathan Russell-Anelli, Perl Egendorf, Sam Anderson, Yolanda Gonzalez, Hannah Shayler, and Jenny Kao-Kniffin)
 - Portable XRF (heavy metal screening)
- Soil suitability for biochar use in NYS (*Johannes Lehmann, Dominic Woolf)
 - Identify farmland that is most suitable for biochar applications

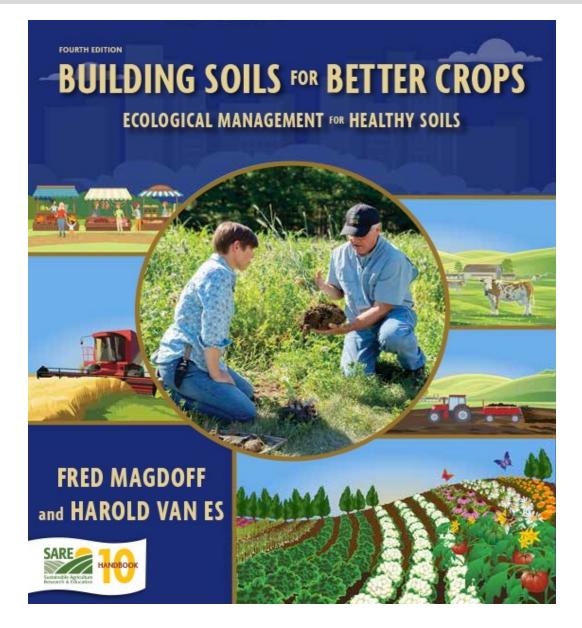
Biochar: increasing awareness and understanding


Pyrolysis - the thermochemical decomposition of biomass at high temperatures in the absence of oxygen

- Charcoal like material produced from organic waste materials
- Long-lasting soil amendment
- Improves soil health
- Carbon sequestration technology



Suitability of biochar for application to NYS croplands

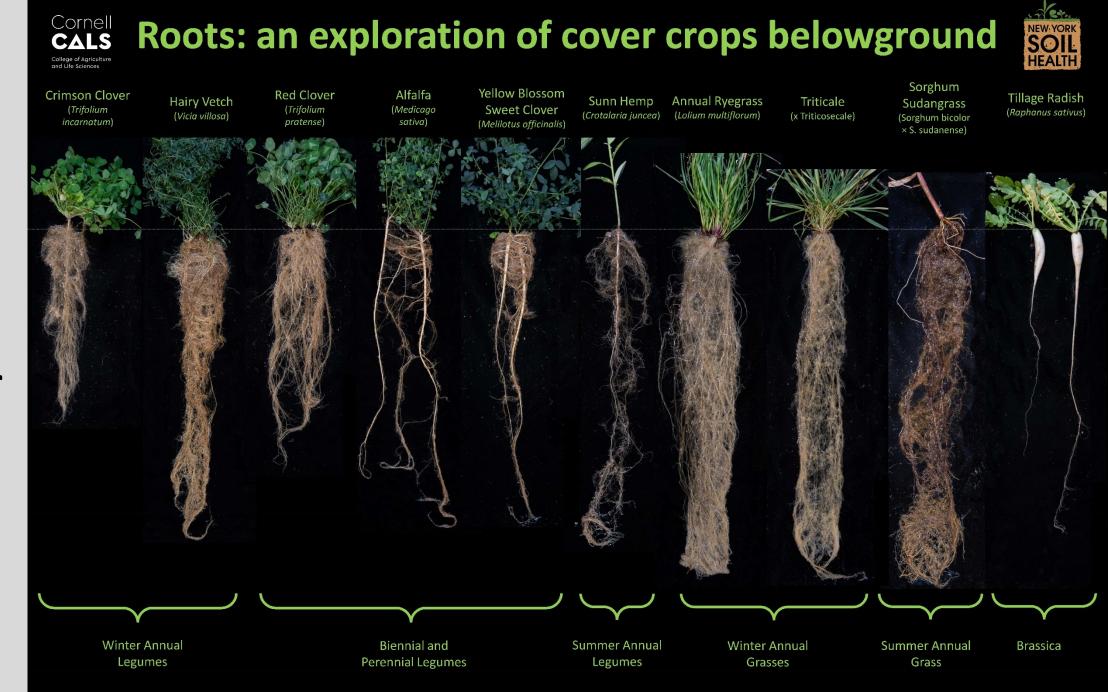

Potential for a positive yield increase

Aller and Dookohaki, unpublished

Soil Health Publications

Comprehensive Assessment of Soil Health Laboratory

Soil Health Manual Series


This document contains the complete Soil Health Manual Series fact sheets. The fact sheets are abbreviated versions of portions of "The Comprehensive Assessment of Soil Health - The Cornell Framework Manual, Third Edition".

Individual fact sheets can be downloaded at <u>bit.ly/SoilHealthFactSheets</u>. The full manual is available at: <u>bit.ly/SoilHealthTrainingManual</u>

Cornell University School of Integrative Plant Sciences

Soil and Crop Sciences Section

Cover Crop Poster

Project credit: Joseph Amsili, Jenn Thomas-Murphy, Sandra Wayman, Matt Ryan

NYSH Policy Briefs *Quarterly briefs beginning winter 2022*

- Targeted at non-technical audiences and decision makers
- Highlights from research and outreach efforts
- Considerations for policy decisions
- Published on NY Soil Health website

Managing for Better Soil Health on Long Island Farms

Overview

To enhance our understanding of soil health on farms on Long Island (L1), the New York Soil Health Initiative analyzed over 300 soil samples using the Comprehensive Assessment of Soil Health (CASH) test between 2014-2021. Agricultural production environments on L1 (soils, climate, cropping systems) are distinct from to the rest of New York State (NYS). These findings can support more realistic soil health goals and provide regionally tailored policies and management practice recommendations.

Background

Healthy soil is critical for the long-term productivity and sustainability of farms and is impacted by both natural and human factors. A New York Soil Health Initiative report¹ and peer-reviewed paper² found that both cropping system and soil texture impact soil health levels on farms across NYS. A more recent study highlighted the need for smaller regional-level analyses within NYS to enable farmers to compare their soil health levels to peers within similar production environments to meet realistic soil health goals³.

Suffolk County, the eastern two-thirds of LI, is home to over 550 farms and a tremendous diversity of agricultural operations that are integral to the region's identity and economy (Figure 1). Land values are higher and markets more focused on high-value specialty crops compared to the rest of NYS, while the climate is warmer, and the soils are more coarse-textured (high sand and low clay content). Despite being ideal for crop production, deep well-draining soils are more prone to nutrient and pesticide leaching, lower organic matter levels, and poor structure. Identifying and implementing practices that improve soil health is critical for protecting the environment, increasing the resiliency of farms to climate-related risks, and maintaining LI's agricultural industry.

Fig. 1. The five cropping systems analyzed in Suffolk County (n=304): woody plant nurseries, pasture and hay land, mixed vegetable, process vegetable, perennial fruit

Policy Considerations

- Long Island (LI) soils need to be regarded as distinct from soils found in other parts of NYS.. Soil health programs and goals need to be appropriate for its farms and urban areas.
- Soil and environmental programs must encourage the use of soil-building practices that are regionally appropriate for LI's warmer and more humid climate, such as cover cropping adapted to the local crops and longer growing seasons, reduced tillage and mulch-based systems.
- LI offers great opportunities for cycling organic wastes from urban and peri-urban areas to the regional farms (e.g., food and yard waste, tree cuttings, horse manure, etc.). These can be processed locally into high quality organic materials (e.g., composts, mulches, and biochar) and utilized to build soil health on farms, enhance carbon storage in soils, reduce fertilizer and pesticide use, and lessen nutrient losses to surface and groundwater.
- Policies that impact LI farmers must reflect their unique production environment challenges while considering local food needs, farm viability, and high land and labor costs.

Comprehensive Assessment of Soil Health

From the Cornell Soil Health Laboratory, Department of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853. http://soilhealth.cals.cornell.edu

Grower: Innovative Grower

Agricultural Service Provider: Lorie Ames lames@wnycma.com

Measured Soil Textural Class: loam

Sand: 49% - Silt: 38% - Clay: 12%

 Sample ID:
 UUU24

 Field ID:

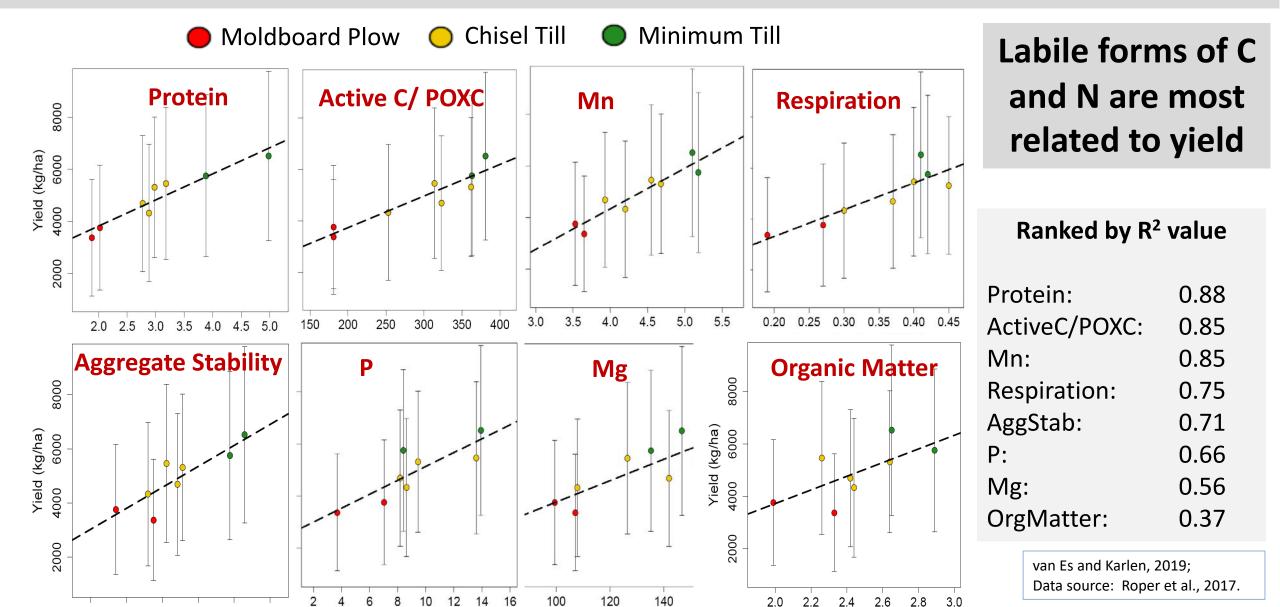
 Date Sampled:
 05/13/2020

 Given Soil Type
 OnC

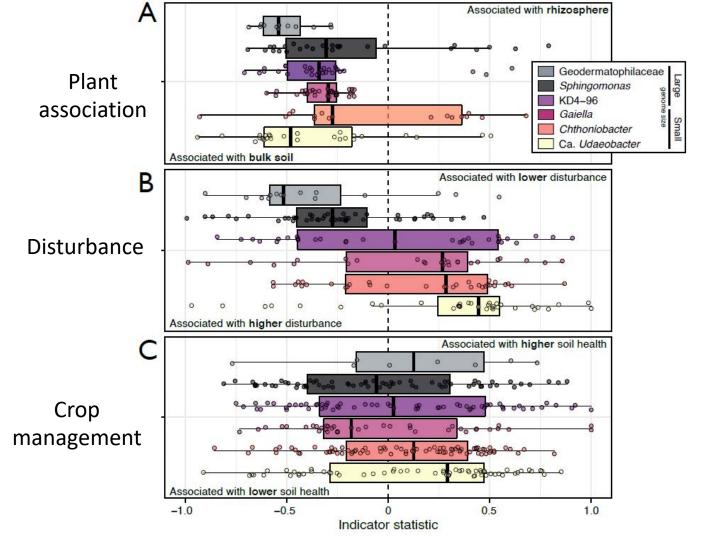
 Crops Grown:
 COG/SOY/RVG

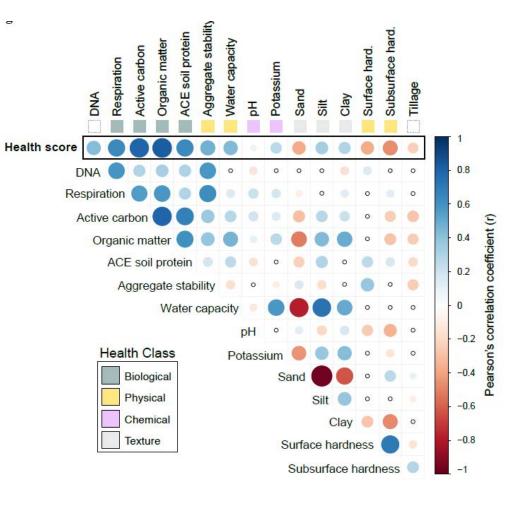
 Tillage:
 no till

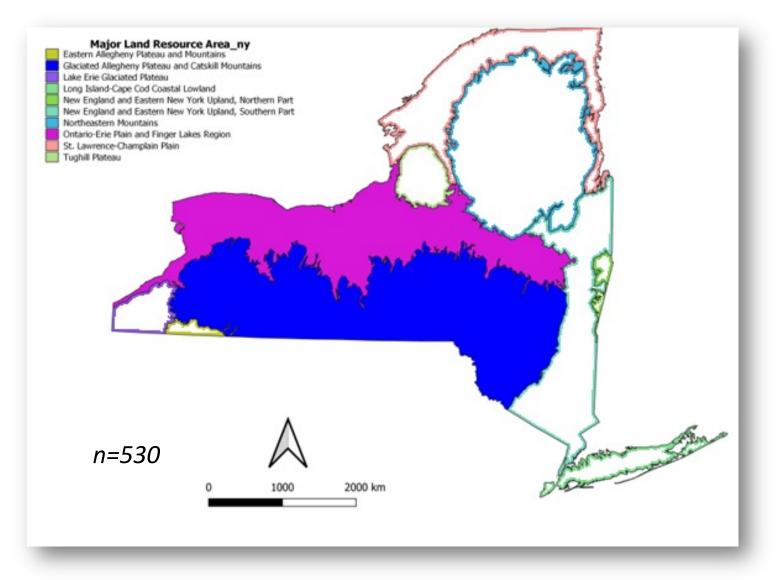
 Coordinates:
 Latitude:


 Longitude:

Insights Into Soil Health Indicators and Farming Practices


Available Water Capacity ardness e Hardness : Stability atter : 1.68 / Total Nitrogen: 0.14 rotein Index	0.21 193 293 10.4 2.3 4.8	78 36 52 12 20	Aeration, Infiltration, Rooting, Crusting, Sealing Erosion, Runoff
e Hardness Stability atter : 1.68 / Total Nitrogen: 0.14	293 10.4 2.3	52 12	
Stability atter : 1.68 / Total Nitrogen: 0.14	10.4 2.3	12	
atter : 1.68 / Total Nitrogen: 0.14	2.3		
: 1.68 / Total Nitrogen: 0.14		20	
rotein Index	4.8		
		30	
ration	0.5	40	
bon	628	75	
	6.9	100	
e Phosphorus	19.0	100	
e Potassium	154.4	100	
nents Fe: 1.5 / Mn: 5.2 / Zn: 0.6		100	
	e Potassium nents	e Potassium 154.4	e Potassium 154.4 100 nents 100

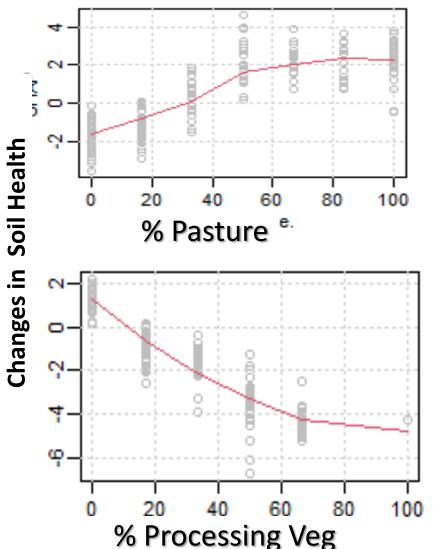

Soil Health Indicators Related to Average Corn Yields Long-Term Tillage Studies



Wilhelm et al., 2022

SPATIAL ASSESSMENT SOIL HEALTH INDICATORS IN NEW YORK: *Disentangling the role of anthropogenic management*

Samples with GPS coordinates submitted between 2014-2022



Understanding the effects of cropping system factors

Composite SH Indicator

Objectives

- Spatially assess soil health and carbon/nutrient cycling
- Explore opportunities for regional management strategies and carbon/nutrient exchange

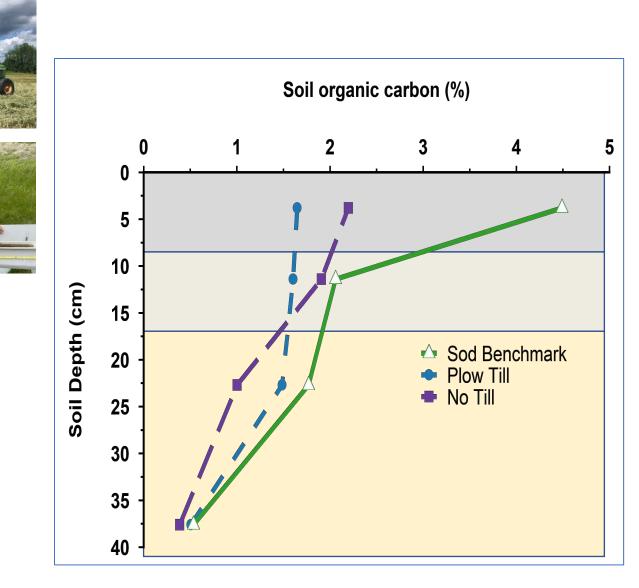
Where are farms with surplus? Where are farms with deficits?

NYS Soil Health and Climate Resiliency Act

...PROMOTE SCIENTIFIC UNDERSTANDING OF SOIL HEALTH AND CARBON SEQUESTRATION WITH VARIOUS FARMING PRACTICES...

...AND PRECISE APPLICATION OF ADDED **NUTRIENTS** TO ACHIEVE NITROUS OXIDE EMISSIONS REDUCTION...

Quantifying effects of tillage, cropping system, and cover crops on soil organic carbon


NEW YORK

Sites:

- Musgrave Research Farm
- Willsboro Research Farm

Preliminary Results:

- No-Till leads to higher SOC and soil health at the surface than Plow-Till, but not necessarily overall greater SOC sequestration.
- Biomass inputs (e.g., grain vs. silage) influence benefits of tillage system

New Initiative: Strategic Tillage and Amendment Management

No-till corn silage: Compaction & poor manure injection

Strip tillage: Flexible soil management tool

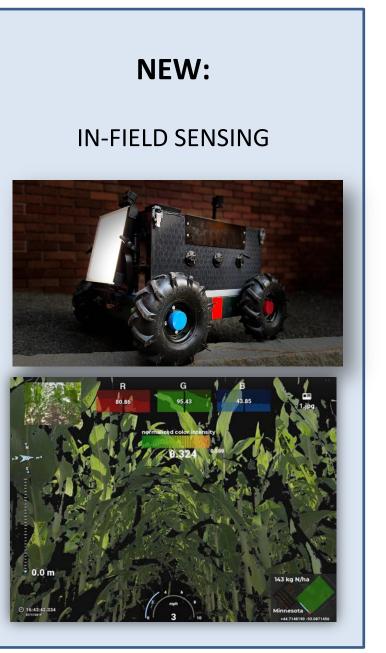
Cold season field management: Improved soil health and reduced nutrient and GHG losses

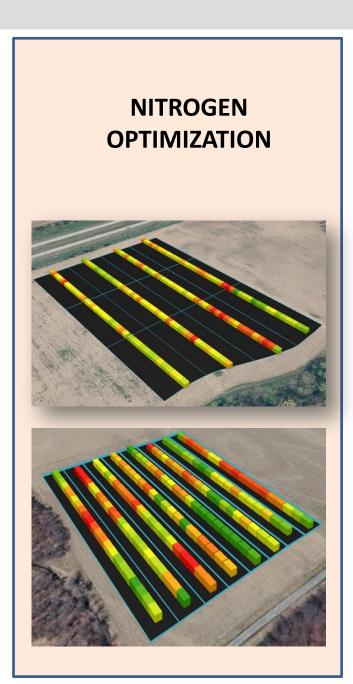
Nitrogen Management in Multi-Objective Cropping Environments: Soil Health, Carbon Storage, Water Quality, Energy

Innovation in cropping systems requires updated nutrient recommendations:

- More diverse and perennialized rotations
- Conservation practices (tillage, crop residue management)
- Cover cropping
- Improved crop genetics and higher yields
- Diverse organic inputs
- Variable timing, placement, and new fertilizer technologies

ALL PRACTICES INTERACT WITH SOIL AND WEATHER




Optimum Nitrogen Rate

AVAILABLE:

MODEL USING WEATHER, SOIL AND CROP MANAGEMENT DATA

Soil health is a function of inherent, cropping, and management factors Biomass cycling and tillage are important factors for soil health R&E activities to support NYS Soil Health and Climate Resiliency Act

New soil health initiatives: urban areas, perennial fruits

Soil health related to C storage and greenhouse gas emissions

Soil health integration into 4R nutrient management